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ABSTRACT 
 

In this paper, a procedure is developed which can be used to identify the natural frequencies and 
natural modes in vacuum of an Arch-Dam from forced vibration testing data of partially filled 
reservoir. The effect of hydrodynamic pressure is removed by using an efficient algorithm. To 
verify the procedure, a simple structure is substituted for the dam with known properties in 
vacuum. Then a thin SSSF-plate is considered as the retaining wall representing of the dam and a 
sub-structuring technique is used with regard to a three dimensional linear compressible inviscid 
fluid body. The calculated resonance in the illustrated example replaces the resonance which in 
practical in-situ has been measured. Also the effect of the wave absorption at the bottom and 
bank of the reservoir is considered. The hydrodynamic pressure of the reservoir is calculated 
using boundary element method. The results which derived by solving an inverse problem, are 
compared with the exact analytical responses of the plate. 
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1. INTRODUCTION 
 

One of the main topics in earthquake engineering is the dynamic analysis of Dam-Reservoir 
systems. There are several extensive methods, which have been applied during the last decades. 
Numerical procedures which include the interaction between several domains with different 
properties: concrete dam, foundation rock, water, bottom sediments and bank of the reservoir, 
have been developed by using the finite element method, the boundary element method and 
various combinations of both methods [1,4,11,2]. Due to the difficulty in determining the 
dynamic model of foundation rock, and especially the high sensitivity of the dynamic response 
to the selection of the dynamic Young's modules of dam concrete structure, using a linear model 
is the basis for any preliminary dynamic analysis of dam-reservoir systems. 

In addition to the theoretical studies, there have been several in-situ experimental studies 
performed on dams [7,8]. The forced vibration tests can yield reliable data from which 
identification of suitable models of the dynamic behavior of the concrete dam, and the dam-
foundation interaction effectively can be made to control and adjust the assumptions made in 
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numerical calculations. As a contribution to the UN-IDNDR, the large-scale dynamic models of 
the interactive system "dam-water-soil" are investigated within the project "Safety of Dams in a 
Seismically Activated Environment" (organized by F. Ziegler, Technical University of Vienna), 
to further improve the safety standards. The project was initiated during the summer quarter 
1992 by performing vibration tests of the large arch dam "Schlegeissperre" (erected 1967–1971), 
situated in Zillertal, Tyrol, Austria in the presence of the authors. 

Three series of vibration tests have been performed during the year 1993-95, at different 
water levels. Data analysis was carried out by means of FFT and the properly modified program 
MODAL 3.0SE (Make SMS) to obtain resonance frequencies and resonance modes of the dam-
reservoir-system [9, 10]. 

Since in most cases it is not practicable to perform dynamic in-situ tests with an empty 
reservoir, it would be necessary to remove the effect of the hydrodynamic pressure on the dam. 
As part of the research work within the project, this investigation is performed by solving an 
inverse problem using the data obtained from the forced vibration tests. 

In a first step and for verifying the solution method, the dynamic response of simple 
structures like beams and plates with fluid interaction effect taken into account are analyzed, 
since there are analytical results of the modal properties of the structure available for comparison 
purpose [12].  

An efficient and accurate solution method for interactive vibration problems of simple 
structures with fluid by [5] has been developed. In this paper the method is extended to the 
radiation damping due to the out going waves. The damping effect is introduced by absorption 
of energy at flexible foundation and banks of the reservoir.  

 
 

2. TIME-HARMONIC VIBRATIONS OF THE FLUID BODY IN AN 
IRREGULARLY SHAPED RESERVOIR 

 
Assumptions - The Arch dam-reservoir-foundation system is replaced by a SSSF-plate facing a 
water domain with the following assumptions: 

- Small amplitude motion, 
- Water is compressible and in viscid, 
- Effect of surface waves are neglected, 
- Waves travel identical throughout the bottom and banks in the  
 
Equations of Motion - For a Time-harmonic excitation and by considering the above 

assumptions, the hydrodynamic pressure is a result of the three-dimensional Helmholtz equation:
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where, 
 z,y,x  =  Cartesian coordinates 
 k  = wave number  
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fC
ν   
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  ν   = exciting frequency 
 fC  = sound velocity in fluid.( for water = 1484 m/s ) 

p   = hydrodynamic pressure 
 

 

Figure 1. Dam-Reservoir mathematical model 

 
Boundary Conditions-The boundary conditions associated with Eq.1 can be expressed as 

follows: 
 at the dam-fluid interface Γ1  
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where, 

 1p   = hydrodynamic pressure at the dam-fluid interface 
 n   = outward normal to the interface 
     fρ   = density of fluid 
 nw = normal component of the dam displacement at the boundary 
 
 at the reservoir bottom and banks Γ2  
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where, 
 p1 = pressure at the fluid-foundation boundary 
 γ = damping coefficient 

  = ≤γ≤







α+
α−   0 ; 

1
1

C
1

R

R

f

  

 αR = wave reflection coefficient ; 0 1≤ ≤ Rα   
 
 at the surface of the reservoir Γ3  
 

 0p3 =  (2c) 
 
 along the Near-Far  field interface Γ f  

 
It is located at the interface of irregular finite section, near field (Region I ) and an uniform 

infinite section, far field (Region II ) . There exist the following equilibrium condition, 
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where,  pf   is the hydrodynamic pressure at Γ f .  

 
For a efficient numerical solution of the problem, governed by Eq.(1), the third Green's 

identity is used to transform the three-dimensional mixed boundary value problem into a two-
dimensional boundary integral equation: 
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where the Green's function has to satisfy the inhomogeneous Helmholtz equation, Eq.(4), with 
the Dirac delta function on the right hand side  
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rr  = the position vector of the observation point 
 

rr0  = the position vector of the source point 
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 Γ  = the closed surface bounding the interior volume V   

 
0n 

 
∂
∂  = differentiation along the outward normal to Γ  

 
Höllinger 3 has applied the following fundamental solution, which satisfies implicitly the free 

surface condition at Γ3 : 
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The boundary Γ  is discretized and then approximated by dividing it into m  plane elements 
( )mj1A j ≤≤ . The hydrodynamic pressure in the central point of each element is sampled in a 

vector p , thus obtaining a vector with m  unknown components jp . Therefore, applying Eq. (3) 

renders a set of linear equations of hydrodynamic pressure vector p
r

 : 
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Thus the whole set of equations in the Region I, enclosed by Γ1 , Γ2  and Γ f , can be 

expressed in a matrix form as: 
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The relation between p  and 
∂
∂
 
 
p
n

 along fΓ  of Region II is : 
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where, 
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and ( )νjA  is an unknown coefficient which eliminates after applying boundary condition in  
Eq. (2d). 

Note that Eq. (9) satisfies the equation of motion and the boundary conditions along 2Γ  and 

the free surface, 3Γ . By applying Eqs. (6) and (9) we have the relation between p  and 
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along fΓ  of Region I written in a matrix form as follows: 
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where 
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By applying the boundary condition in Eq. (2d), we obtain, 
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substituting Eqs. (14) and (13) into Eq. (11), the equation for calculating hydrodynamic pressure 
on the up-stream face of the dam is: 
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3. REMOVING THE EFFECT OF THE HYDRODYNAMIC PRESSURE BY 

SOLVING AN INVERSE PROBLEM 
 

In order to formulate the inverse problem, it is assumed that resonance frequencies and 
resonance modes of the dam-reservoir system are obtained from forced vibration tests and data 
analysis [10]. It is then required to remove the effect of hydrodynamic pressure to evaluate the 
natural frequencies and natural modes of the system. 

The arch dam is assumed to be linear elastic. The continuous displacement field of the dam 
can be approximated by discrete displacements of a model with finite number of unstained nodal 
points. Thus, the equation of motion for the discrete displacements of a light damped dam under 
hydrodynamic pressure at the upstream face and under time harmonic external force excitation 
can be expressed in matrix form as: 

 
 ( ) ( ) ( ) ( ) ( )ttttt fpKwwCwM +=++ &&&  (16) 

 
where, 

 
 M      = symmetric mass matrix 
 C       = symmetric damping matrix 
 K       = symmetric stiffness matrix 
 ( )tp  = vector of the nodal point loads associated with the hydrodynamic pressure 
 ( )tf  = vector of external excitation forces applied at some selected nodal points 
 ( )tw&&  = nodal point acceleration vector, relative to the ground 
 ( )tw&  = nodal point velocity vector, relative to the ground 
 ( )tw  = nodal point displacements vector, relative to the ground 
 

where, 
 { }nnn222111

T w,v,u,...w,v,u,w,v,u=w  (17) 
 

in which, 
 u = component of w  with respect to the x-axis 
 v = component of w  with respect to the y-axis 
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 w = component of w  with respect to the z-axis 
 
Under time-harmonic force excitation with frequency ν , response is also time-harmonic 

with the same frequency ν . Thus, Eq. (16) looks on the time reduced form:  
 

 − + + = +ν ν   2Mw Cw Kw p fi  (18) 
 
The deformation vector w  can be approximated by the finite series of the (non-orthogonal) 

resonance modes of the coupled system: 
 

 ∑
=

ψ=
n

1j
jjYw  (19) 

 
where, 

 jψ  =  the jth resonance mode of the coupled arch dam-fluid system  
 jY   = the jth associated coordinates 
 n   = the number of modes selected in modal analysis. 
 
The hydrodynamic pressure on the upstream face in the jth resonance mode of deformation 

p j  can be calculated by the boundary element method just by inserting the resonance mode ψ j  
and multiplying the resonance frequency ~ω j . The total hydrodynamic pressure of any forcing 
frequency can be expressed as the linear combination of p j : 
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Therefore, Eq. (18) renders: 
 

 − + + = +ν ν   2M Y C Y K Y PY fΨ Ψ Ψi  (21) 
 

where, 
 Ψ  = matrix of the resonance modes of the discretized arch dam-fluid  
 P  = corresponding loading matrix associated with the hydrodynamic 
          pressure 
 
In resonance, the external excitation frequency ν  equals the resonance frequency ~ω j  , then 

Eq. (21) becomes: 
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The resonance mode can be expanded into a series of the orthogonal set of natural modes in 
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vacuum with unknown coefficients d j  as: 
 

 ψ j j j n= =Φd ; , , ...1 2   (23) 
 

where, 
 Φ  = modal matrix of the undamped dam in vacuum 
 
Substituting Eq. (23) into Eq. (22) renders: 
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Multiplying both sides of Eq. (24) by T

iψ  which is also expanded into the natural modes of 
the dam analogous to Eq. (23), renders formally: 
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Using the orthogonality of the natural modes Eq. (25) renders to the set of equations: 
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where the natural modes of the arch dam are assumed orthonormalized  
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where, Ι  = unit matrix 

 
and the damping matrix C  is assumed to satisfy the matrix  condition: 
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where, ξ  = modal damping ratio. 
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Excitation is  a single concentrated force at the crown of the dam: 
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or, in the short hand: 
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The complex frequency response ( )Hij j
~ω  of the system is defined by: 
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which can be rewritten into a Real-part, ( )h
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It is known that at the behaviour of complex frequency response ( )Hij j
~ω  at resonance case, 

is in such a way that, its real part, ( )h
ij j

~ω , vanishes and its imaginary part, ( )h
ij j

~ω , tends to its 

maximum value. 
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Eq. (37) provides a first set of n n×  equations for the unknown values of dik and ωk. Further, 
considering the orthogonality condition substituting Eq. (23) and yield: 
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The left hand side of Eq. (30) is real  
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can be calculated by utilizing numerical solution strategy, such as Netwton’ s iteration 
algorithm. 

Furthermore, ( )Φ j x  can be obtained by solving the linear equations with known complex 
coefficient s according to Eq.(23). 
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4. CONCLUDING REMARKS 
 

An efficient strategy is proposed to remove the effect of hydrodynamic pressure in dam-reservoir 
systems to calculate the natural modal properties of the dam using the data obtained from 
vibration tests on dams at some water level. As a first step, the simple interactive vibrations of 
the simple system plate-linear compressible fluid in a finite reservoir are analyzed to verify the 
solution strategy. The calculated natural frequencies and modes (derived by solving an inverse 
problem) are compared with the analytical results available for SSSF-plate. Good agreement is 
observed. 
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